BREAKOUT GROUP GUIDANCE

Vision 21 Workshop for Virtual Simulation September 11-12, 2001 Pittsburgh, Pennsylvania

Workshop Objectives

- Foster communications between developers of Vision 21 technologies and developers of models/simulation systems
- Examine key modeling/simulation needs
 - model/simulator development
 - user interfaces
 - information exchange/communications
 - –government role
- Help develop Vision 21 modeling/simulation strategy

Breakout Groups DAY I

Fuel and Gas Stream Processing

- Combustion
- Gasification
- Gas cleanup and separation

Electricity from Syngas

- -gas turbines
- -fuel cells

Fuels/Chemicals from Syngas

- –FT reactor
- Methanol
- Other fuels/chemicals

Issues for Breakout Groups Discussions

DAYI

- Model Development
- Information Exchange/Communications
- Government Role

DAY II

- Simulator Development
- Model/Simulator User Interface
- Next Steps

Breakout Group Assignments Fuel & Gas Stream Processing

Janos M. Beer, MIT

Mike Bockelie, Reaction Engineering Int'l.

Christopher Hadad, Ohio State Univ.

Alasdair C.I. Heath, Bechtel R&D

Dale Keairns, SAIC

David Lewandowski, Consol Energy

William F. Michels, Fuel Tech

John C. Molburg, ANL

James L. Moseley, WVU

Thomas O'Brien, NETL

Sreekanth Pannala, ORNL

John E. Plunkett, EG&G Technical Services

Ashok Rao, Univ. of California, Irvine

A.C.(Paul) Raptis, ANL

Adel F. Sarofim, Reaction Engineering Int'l.

David Swensen, Reaction Engineering Int'l.

Breakout Group Assignments *Electricity from Syngas*

David H. Archer, CMU

Benedicte Bascle, Siemens Corporate Research

Michael B. Berkenpas, CMU

Zhong-Ying Chen, SAIC

James A. Ciesar, Siemens Westinghouse Power Corp.

Kelly J. Knight, Bechtel R&D

Stewart J. Lehman, KraftWork Systems

Michael Lukas, Fuel Cell Energy

Adyemir Nehrozoglu, Foster Wheeler Development Corp.

John Ruether, NETL

Tom I-P. Shih, Michigan State Univ.

Cliff Smith, CFD Research Corp.

Guodong Sun, CMU

Breakout Group Assignments <u>Fuels/Chemicals from Syngas</u>

Jerry Boyle, NETL
Edward D. Brandner, EXPORTech
Kenneth Bryden, Iowa State Univ.
Dragomir B. Bukur, Texas A&M Univ.
Issac K Gamwo, NETL
Santosh K. Gangwal, RTI
Lynn Layman, Pittsburgh Supercomputer Center
Madhava Syamlal, Fluent
James N. Tilton, DuPont Engineering

Breakout Groups DAY II

- Vision 21 Virtual Plant Simulations
 - -Simulator development
 - -Visualization
 - Next steps

2 Breakout Groups Address Same Issues

Breakout Group Assignments Vision 21 Virtual Plant Simulations

Group I

Group II

Berkenpas	Moseley	Archer	Lehman
Brandner	Nehrozoglu	Bascle	Lewandowski
Bukur	Pannala	Beer	Molburg
Chen	Rao	Bockelie	O'Brien
Gamwo	Raptis	Boyle	Plunkett
Hadad	Ruether	Bryden	Shih
Heath	Sarofim	Ciesar	Sun
Knight	Smith	Gangwal	Swensen
Lukas	Tilton	Keairns	Syamlal
Michels		Layman	J

Ground Rules

Self organize

-select discussion leader, recorder, presenter

Use time wisely

- allow enough time to prepare presentations/reports
- Day I: 9:15 4:30, Day 2: 8:15 -10:45

Lap-top computers available

- documentation
- presentations to group

Product manager overview

-will help orient group

Product of Workshop

A list of recommendations that address priorities and issues (add other issues you think relevant)

- -stand-alone
- -specific
- -clear, concise

Presentations

Day I summary

- summarize issues as they relate to subject technology
- -conclusions/recommendations
- -15 minutes

• Day II summary

- summarize findings on simulator development and user interface
- next steps
- -15 minutes

Glossary

Technology module

 a plant subsystem (e.g., a gasification subsystem in an IGCC plant)

Component

–a part of a subsystem (e.g., a pump or heat exchanger)

Model

 software code used to describe the transient or steady-state performance of a technology module or component

Simulator

software code that describes a complete system or plant

